Nonlinear mechanics of hyper elastic polyurethane furniture foams*
نویسندگان
چکیده
Upholstered furniture intended to provide better sleep and rest, especially furniture for disabled persons, require careful design of elastic spring systems. In the majority of cases, when designing new articles, both furniture designers and manufacturers rely on long-term experience and craftsman’s intuition. On the other hand, the accumulated interdisciplinary knowledge of modern medical laboratories as well as furniture certification offices indicate that it is necessary to carry out investigations related to the mechanical properties of raw materials used to manufacture furniture and to conduct virtual modelling of the phenomena connected with the contact of the human body with the elastic base. The aim of this study was to determine the elastic properties of hyper-plastic polyurethane foams applied in furniture industry, to elaborate mathematical models of these materials on the basis of non-linear Mooney-Rivlin models and to conduct a non-linear numerical analysis of contact strains in a deformed seat made of polyurethane foam. The results of the experiments revealed that the mechanical properties of polyurethane foams are described properly by the Mooney-Rivlin model. Knowing the mechanical properties of these foams, it is possible to create freely complex furniture elastic systems. The state of strains in the contact of the human body with foam depends on the friction between these bodies. Therefore, in practice, it is advisable to design seat systems resulting in minimal frictions between the user’s clothes and the furniture seat.
منابع مشابه
Analytical solutions for geometrically nonlinear trusses
This paper presents an analytical method for analyzing trusses with severe geometrically nonlinear behavior. The main objective is to find analytical solutions for trusses with different axial forces in the bars. The methodology is based on truss kinematics, elastic constitutive laws and equilibrium of nodal forces. The proposed formulation can be applied to hyper elastic materials, such as rub...
متن کاملEffect of non-acoustic properties on the sound absorption of polyurethane foams
In this paper the influence of non-acoustic properties on the sound absorption coefficient of polyurethane foams as a porous medium is investigated. Biot’s equations with transfer matrix method, as the solution approach are employed to evaluate the sound absorption coefficient of selected polyurethane foams. The major issue is the dependency of non-acoustic properties on each other which makes ...
متن کاملHyper-elastic modelling of intervertebral disc polyurethane implant.
Artificial materials including various kinds of polymers like polyurethanes are more and more widely used in different branches of science and also in biomedical engineering. The paper presents the process of creating a constitutive equation for a polyurethane nanocomposite which is considered to be hyper-elastic. The constitutive modelling was conducted within the range of application of the m...
متن کاملEffect of Variability in Micro-geometry of Polyurethane Foams on the Double Wall Transmission Loss
Propagation of waves in elastic porous media, e.g. polymeric foams, is described by Biot-Allard’s theory [1]. Two classes of characteristic parameters are needed to describe the porous media in this theory. First, non-acoustic parameters: porosity φ, thermal characteristic length Λ′, viscous characteristic length Λ, flow resistivity σ, and tortuosity α∞ which are used in Johnson-Champoux-Allard...
متن کاملPolyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols.
Rigid polyurethane foams were synthesized using a renewable polyol from the simple physical mixture of castor oil and crude glycerol. The effect of the catalyst (DBTDL) content and blowing agents in the foams' properties were evaluated. The use of physical blowing agents (cyclopentane and n-pentane) allowed foams with smaller cells to be obtained in comparison with the foams produced with a che...
متن کامل